Univariate right fractional polynomial high order monotone approximation
نویسندگان
چکیده
منابع مشابه
Pointwise Estimates for Monotone Polynomial Approximation
We prove that if f is increasing on [ 1,1], then for each n = 1, 2 . . . . . there is an increasing algebraic polynomial P. of degree n such that {f(x) P.(x){ < cw2( f, V/I x 2 /n) , where w2 is the second-order modulus of smoothness. These results complement the classical pointwise estimates of the same type for unconstrained polynomial approximation. Using these results, we characterize the m...
متن کاملUnivariate Polynomial Inference by Monte Carlo Message Length Approximation
We apply the Message from Monte Carlo (MMC) algorithm to inference of univariate polynomials. MMC is an algorithm for point estimation from a Bayesian posterior sample. It partitions the posterior sample into sets of regions that contain similar models. Each region has an associated message length (given by Dowe’s MMLD approximation) and a point estimate that is representative of models in the ...
متن کاملHigh order parametric polynomial approximation of conic sections
In this paper, a particular shape preserving parametric polynomial approximation of conic sections is studied. The approach is based upon a general strategy to the parametric approximation of implicitly defined planar curves. Polynomial approximants derived are given in a closed form and provide the highest possible approximation order. Although they are primarily studied to be of practical use...
متن کاملHigh order approximation of rational curves by polynomial curves
We show that many rational parametric curves can be interpolated, in a Hermite sense, by polynomial curves whose degree, relative to the number of data being interpolated, is lower than usual. The construction unifies and generalizes the families of circle and conic approximations of Lyche and Mørken and the author in which the approximation order is twice the degree of the polynomial.
متن کاملNumerical Univariate Polynomial GCD
We formalize the notion of approximate GCD for univariate poly-nomials given with limited accuracy and then address the problem of its computation. Algebraic concepts are applied in order to provide a solid foundation for a numerical approach. We exhibit the limitations of the euclidean algorithm through experiments, show that existing methods only solve part of the problem and assert its worst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Demonstratio Mathematica
سال: 2016
ISSN: 2391-4661
DOI: 10.1515/dema-2016-0001